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1. Introduction

In establishing and developing the theory of non-linear oscillations in the first half of the twentieth century,1-4 most attention was given
to analysing and synthesising oscillatory systems for which solving the problem of the existence of the oscillation modes did not present
any great difficulties. The structure of many mechanical, electromechanical and electronic systems was such that there were oscillation
modes in them, the existence of which was “almost obvious”. The main attention of investigators was therefore concentrated on analysing
of the form and properties of these (“almost” harmonic, relaxation, synchronous, circular, orbitally stable, etc.) oscillations.

In the 1950’s, the attention of many scientists concentrated on two celebrated problems, the sixteenth Hilbert problem 5-8 and the
Aizerman problem,9–13 for which the proof of the existence of periodic solutions was not a trivial problem, and considerable progress was
made in investigating these problems. It was found that they have a lot in common: while the problem of searching for periodic solutions in
the case of two-dimensional periodic systems was formulated by Hilbert from the very beginning, it was revealed during investigations into
the Aizerman problem that the differential equations of automatic control systems, satisfying the generalized Routh–Hurwitz conditions,
can also have periodic solutions.13 The problem of searching for the periodic solutions of such differential equations is also a current
problem for subsequent investigations in this direction.

These two problems stimulated an enormous number of investigations in the second half of the twentieth century. Hilbert’s sixteenth
problem stimulated the development of bifurcation theory and the theory of normal modes, and the Aizerman problem stimulated theories
of absolute stability. The most complete bibliography is available in Refs. 14–19, in which there are more than two thousand references.
This review is dedicated to some efficient methods and techniques for searching for periodic solutions, which arose as the result of these
investigations, and to both analytical and numerical methods. An attempt is made here to reflect the current trends in the synthesis and
analytical and numerical methods, including powerful computer techniques for solving complex mathematical problems.

2. Cycles of two-dimensional quadratic systems

The Kolmogorov problem. Arnol’d writes:20 “In order to estimate the number of limit cycles of quadratic vector fields in a plane,
Kolmogorov distributed several hundreds of such fields (with randomly chosen coefficients of the second-degree polynomials) among
several hundred students in the Mechanical-Mathematical Faculty of Moscow State University as a tutorial exercise. Each student had to
find the number of limit cycles of his own field. The results of this experiment were completely unexpected: not a single limit cycle was
found in any field!

A limit cycle is conserved when the field coefficients are slightly changed. Hence, systems with one, two, three (and even, as would
become known later, four) limit cycles form open sets in the space of the coefficients such that the probabilities of entering into these sets
in the case of a random choice of the polynomial coefficients are positive.

This fact that this did not happen suggests that the above-mentioned probabilities are obviousely small”.
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The result of this experiment also demonstrates something else: the need to develop purposeful methods for searching for periodic
oscillations, that is, both analytical and numerical methods, which make use of the full power of current computational techniques. This
review is concerned with describing some of these methods.

Here, we are concerned with the Kolmogorov problem and we will elucidate whether two-dimensional quadratic dynamical systems
exist for which the students might have revealed limit cycles in their tutorial exercise described above. To do this, we reduce an arbitrary
quadratic system to the special Liénard equation. For quadratic systems, transformations to the Liénard equation have been used in Refs.
21-28. Here, we follow Refs. 26-28.

We consider the quadratic system

(2.1)

where ai, bi, ci, ˛i, ˇi are real numbers.

Assumption 1. Without loss of generality, it can be assumed that c1 = 0.

Proof. To be specific, we will assume that a2 /= 0 (otherwise, on changing the notation x→ y, y→ x, we immediately obtain c1 = 0). We
next introduce the linear transform x1 = x + vy, y1 = y. To prove Assumption 1, it is sufficient to show that the identity (x + vy) = (a1 +
va2)x2 + (b1 + vb2)xy+ (c1 + vc2)y2 + (˛1 + v˛2)x + (ˇ1 + vˇ2)y = �(x + vy)y+ k(x + vy)2 + (˛1 + v˛2)x + (ˇ1 + vˇ2)y, which is equivalent
to the following system of equations

(2.2)

holds for certain numbers �, � and v.

Equalities (2.2) are satisfied if

Since a2 /= 0, this equation of the third degree in v always has a real root. Hence, the system of equations (2.2) always has a real solution.
We will henceforth assume that c1 = 0.

Assumption 2. Suppose b1 /= 0. The straight line �1 + b1x = 0 in the plane {x, y} is either invariant or transversal for trajectory system
(2.1).

Proof. This assertion follows from the equality

when x = −�1/b1: if the expression in the square brackets is equal to zero, the straight line �1 + b1x = 0 is invariant, and if it is not equal
to zero, this straight line is transversal.

Next, excluding the trivial case, when the right-hand side of the first equation of (2.1) is independent of y, from the treatment, we shall
assume that

(2.3)

It follows from this and from Assumption 2 that the limiting cycles of system (2.1) are also trajectories of the system

(2.4)

We now introduce the transformation

into the treatment.
In these new phase variables (we will subsequently omit the dashes over the variables: x̄→ x, ȳ→ y) system (2.4) is written in the form

(2.5)
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where

It follows from Assumption 2 and condition (2.3) that the trajectories of system (2.5) are also trajectories of the system

where p(x) is a certain integral of the function Q(x).
Using the substitution x̄ = x, ȳ = yep(x), from this system we obtain the system

(2.6)

Here, after the above-mentioned transformation, the dashes over the variables x and y are again omitted.
Hence, when investigating the limit cycles, system (2.1) when b1 /= 0 can be reduced, using the above-mentioned substitutions, to the

Liénard equations (2.6) with the functions

and, when b1 = 0, to Eq. (2.6) with the functions

When b1 /= 0, the limit cycle of system (2.1) passes into the limit cycle of system (2.6), which is located to the right or to the left of the line
of discontinuity ˇ1 + b1x = 0, y∈R1. This follows from Assumption 2.

Liénard’s theorem on the existence of a limit cycle is well known in the case of Eq. (2.6) with smooth functions f and g.29,30 Here, we
will present an extension of this theorem to the case of discontinuous functions f and g and apply it to Kolmogorov’s problem. To do this,
we shall assume that the functions f(x) and g(x) are differentiable in the interval (a,+∞) and that the following conditions are satisfied for
certain numbers a < v1 ≤ x0 ≤ v2

Theorem 1. Suppose Conditions 1 and 2 are satisfied and the point x = x0, y = 0 is an unstable focus equilibrium state in the Lyapunov sense.
System (2.6) then has a limit cycle.

Proof. Consider a pair of numbers �1 ∈ (a, v1) and �2 ∈ (v2,+∞) such that the number �1 is sufficiently close to a and the number �2 is
sufficiently large, and

(2.7)
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Fig. 1.

We now introduce the functions

into the treatment. Here, � is a certain sufficiently small number.
We now define the sets�j in the following manner (Fig. 1)

Here, y0 > 0, y2 > 0, y3 < 0, y4 < 0 are the solutions of the quadratic equations

It is clear that, in the case of arbitrary functions Vj(x, y), the relations

(2.8)

hold along the trajectories of system (2.6).
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From these relations, it immediately follows that V̇1 < 0 in �1 ∪�5, V̇2 < 0 in �8 and V̇3 < 0 in �4. The trajectories of system (2.6)
therefore intersect these sets as shown in Fig. 1.

We will now show that the relations

(2.9)

are also satisfied in the sets�2,�3,�6,�7 respectively for a specific choice of the parameters �, �1 and �2. In fact, having fixed � > 0, we
choose �1 and �2 to be so close to a and +∞ that the minimum value of y in the sets˝2,˝3,˝6,˝7 will be greater than

Such a choice of �1 and �2 is possible by virtue of Conditions 1. Inequalities (2.9) follow from this and relations (2.8).
Note (see Fig. 1) that, from conditions 2 and (2.7) for sufficiently small �, we have the inequalities y5 < y6 and y7 > y8, where yk+4(k =

1,2) is a positive solution of the equation

(2.10)

and yk+6(k = 1,2) is a negative solution of the equation

(2.11)

In fact, we initially put � = 0, and the equalities (2.10) and (2.11) then take the form

(2.12)

Since

the equalities

follow from relations (2.12) and condition (2.7), and the estimates

follow from these.
When � = 0, the inequalities y5 < y6 and y7 > y8 follow from this and from Condition 2. It is clear that these inequalities remain true in

the case of small �.
Hence, a closed transversal curve has been constructed here, which is shown in Fig. 1. Since the unique equilibrium state in the {x > a}

half plane, x = x0, y = 0, is an unstable Lyapunov focus, we obtain from this, using the well known ring principle (Fig. 2), that system (2.6)
has a cycle.

The following simple assertions will be useful later.

Assumption 3. Suppose c1 = 0,�1 /= 0. Then, without loss of generality, it can be assumed that �1 = 0.

This assertion is proved using the linear substitution �� ∗ q ≤ ��2
0.

Assumption 4. Suppose c1 = 0,�1 = 0, a1 /= 0, b1 /= 0,�1 /= 0. Then, without loss of generality, it can be assumed that

(2.13)

This assertion is proved using the linear substitution

It follows from Assumptions 1–4 that almost any system (2.1) can be reduced by means of a linear transformation to a form such that
relations (2.13) are satisfied.

If they are satisfied, Conditions 1 and 2 of Theorem 1 can be written in the form

(2.14)
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Fig. 2.

Moreover, it is necessary that the polynomial

(2.15)

should not have real roots in the interval (−1,+∞).
With the condition that x = y = 0 is an unstable focus, the inequalities here will be

(2.16)

It follows from conditions (2.14) that polynomial (2.15) necessarily has a real root in the interval (-4, -1) Hence, in order that this
polynomial does not have a real root in the interval (−1,+∞), it is sufficient that this real root is unique.

We rewrite the polynomial (2.15) in the form

It is well known 31 that the inequality

is the condition for the real root of this polynomial to be unique
Its left-hand side can be written in the form of a third degree polynomial in �2:

It is clear that the inequality�(˛2)> 0 is satisfied in the case of

(2.17)

where 	 is the minimum root of the equation�(	) = 0.
Hence, if relations (2.13), (2.14), (2.16) and (2.17) are satisfied, then all the conditions of Theorem 1 are satisfied and, consequently,

system (2.1) has a limit cycle.
We now present some numerical examples.
Suppose inequalities (2.13) are satisfied and a2 = −1, b2 = 0, c2 = 3/4,�2 = 1. Then,

In this case, conditions (2.14), (2.16) and (2.17) are satisfied when a2 < −1.2. The limit cycles for �2 = −2 − 10,−100,−1000 are shown
in Fig. 3.
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Fig. 3.

Suppose inequalities (2.13) are satisfied and a2 = −2, b2 = −1/2, c2 = 1/2,�2 = 2. Then,

In this case, conditions (2.14), (2.16) and (2.17) are satisfied when ˛2 < −6. The limit cycles are shown in Fig. 4 for �2 =
−10,−100,−1000,−1500.

Suppose inequalities (2.13) are satisfied and a2 = −5;b2 = −1; c2 = 1/4; �2 = 3. Then,

In this case, conditions (2.14), (2.16) and (2.17) are satisfied when �2 < −2. The limit cycles are shown in Fig. 5 for �2 =
−25,−100,−1000,−1500.

Finally, a student would have obtained these results if Kolmogorov had issued the problem to him with these parameters. Here, the
limit cycles are “highly visible”. They are found by virtue of the following purposeful actions. The conditions for the existence of globally
stable limit cycles are well known for different type of Liénard equations describing the dynamics of mechanical, electromechanical and
electronic systems.29,30,33 Only when it became clear that an arbitrary quadratic system reduces to a special Liénard equation did the
attempt to generalize28,34 the previous classical investigations29,30,32,33 to such a Liénard equation become the next natural step. This
generalization also enabled one to obtain the conditions for the existence of limit cycles which separate out the set of infinite Lebesque
measure in the parameter space of system (2.1). This set is not “small”.

3. Domain in the parameter space of quadratic systems where four cycles exist

Kolmogorov certainly knew about Bautin’s investigations.5,35 He showed that up to three small cycles can exist in the neighbourhood
of the zero equilibrium state of system (2.1). To do this, Bautin considered a so-called weak focus where �1 = �2 = 0,�1 = 1,�2 = −1 and
the Lyapunov quantities 36 L1 = L2 = 0, L3 > 0. Then, by slightly perturbing the coefficients, it is possible to achieve that the inequalities

(3.1)

are satisfied.
Hence, the qualitative pattern of the behaviour of the trajectories, shown in Fig. 6, arises in the neighbourhood of the zero equilibrium.
It follows from this that, in this case, three limit cycles exist in the neighbourhood of the point x = y = 0. However, they are small and

“almost invisible” with numerical integration of the trajectories even using current computational techniques.
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Fig. 4.

The first 37, second 38 and third 39 Lyapunov quantities have been calculated in the general case in the neighbourhood of the equilibrium
state for two-dimensional systems with analytic right-hand sides. The corresponding formulae are considerably simplified in the case of
the Liénard equation. We will present them, following the results obtained earlier 39

Suppose, for system (2.6),

Fig. 5.
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Fig. 6.

Then, if f 0 = 0,

If f2 = g2f1, then L1 = 0 and

If 3f4 = 5g2(f3 − g3f1) + 3g4f1, then L1 = 0 and

Calculations of the Lyapunov quantities for various special forms of the Liénard system are also available in Ref. 17.
Since any quadratic system can be reduced to Liénard’s equation, for the proof of the existence of the three small limit cycles in the

neighbourhood of the point x = y = 0 it is sufficient to make use of the formulae for L1, L2 and L3 presented above.
In order that a certain quadratic system (2.1) should correspond to an arbitrary Liénard system with the functions

(3.2)

where A, B, Cj and q are certain numbers and q /= 1/2, it is necessary and sufficient that the relations 34,39,40

(3.3)

are satisfied.
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Fig. 7.

In this case, the parameters of system (2.1) are calculated in the following manner

Hence, in the case when x = y = 0 is a weak focus, c1 = 0, b1 /= 0,2c2 + b1 /= 0 and, in searching for the limit cycles, it is possible to pass
from system (2.1) to system (2.6) with functions of the form of (3.2) when relations (3.3) are satisfied.

Following the procedure described earlier 34,39, we obtain that relations (3.3) and L1 = L2 = 0 are satisfied if

(3.4)

In this case,

(3.5)

Hence, for arbitrary B and q which are such that L3(B, q) /= 0, it is possible to choose A,C1C2, C3 such that inequalities (3.4) are satisfied.
Then, by slightly perturbing the system parameters, we succeed, when L3(B, q)> 0, in satisfying relations (3.1) and (3.2) and, when
L3(B, q)< 0, relations (3.2) and

(3.6)

It has already been mentioned that, in this case, three cycles are generated in the neighbourhood of the point x = y = 0.

Remark. In passing from system (2.1) to system (2.6) and back again at the point x = y = 0, the signs and orders of smallness of the Lyapunov
quantities are preserved. Hence, considering system (2.6) with f (x) and g(x) of the form of (3.2), for which relations (3.3) and (3.4) are
satisfied, we obtain the existence of a certain system (2.1) for which

and, if L3(B, q)> 0, then L3 > 0 for system (2.1) also. Further, by choosing the small disturbances of system (2.1) in a special manner,39 we
obtain inequalities (3.1) (and, if L3(B, q)< 0, inequalities (3.6)).

One of the first papers, where four limit cycles were revealed, was the paper by Shi.41 A method for the asymptotic integration of the
trajectories of Liénard’s equation was developed 42 and, using this, Shi’s results were generalized.

Theorem 2 (42). Suppose relations (3.4), B < 0, q∈ (−1,−1/3) and

(3.7)

are satisfied in the case of system (2.6) with functions f and g of the form (3.2).

The behaviour of the trajectories of system (2.6) with sufficiently large initial data:

will then be as shown in Fig. 7. In this case, L3 < 0, and the unique equilibrium state, located to the left of the line of discontinuity
{x = −1, y∈R1}, is unstable.

The following result follows directly from this.

Theorem 3 (42). If relations (3.4), B /= 0, q∈ (−1,−1/3) and (3.7) are satisfied, system (2.6), (3.2) has a limit cycle located to the left of the line
of discontinuity {x = −1, y∈R1}.
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Fig. 8.

Theorem 3 and the above-mentioned weak perturbations of the parameters therefore enable one to separate out the classes of quadratic
systems with four limit cycles: with one “large” cycle, for which x(t)< −1∀t ∈R1, and three small limit cycles located in the neighbourhood
of the zero equilibrium.

The domain�, for which the conditions of Theorem 3 are satisfied, is shown in Fig. 8. The hatched domain is the set of the parameters
B and q where the existence of four cycles (after small perturbations of the parameters) was obtained by Shi.41 Note that this domain is
contained as a whole in�.

The “large” stable cycles in the domain� (when B < 0) were calculated 39 by numerical integration of the trajectories.
As an example, we will consider the point P in Fig. 8 and transform the parameters B and q corresponding to it and the parameters from

relations (3.4) into the parameters of system (2.1) As a result, we obtain the system

The location of the trajectories tending to the “large” cycle when t → −∞ are shown for it in Fig. 9.
In computer calculations of the trajectories of systems (2.1) and (2.6) with a degenerate focus, we encounter with the effect of a flattening

of the trajectories, which is clearly observed in Fig. 9 when the trajectories pass into a certain neighbourhood of the null point. Here, the
trajectories “almost adhere”. It can be said that here, unlike the widely known parametric stiffness of the system, trajectory stiffness is
observed when the distance between the trajectories is an oscillating function of time and the values of this function at various points of
the period of the oscillation differ by several orders of magnitude.

We will now present a further analogous example 39 of such trajectory stiffness for system (2.6) with

Here also, L1 = L2 = 0, L3 /= 0. The trajectories shown in Fig. 10 are not periodic and approach very close to the zero stationary point in
the region of the flattening. The distance between these the flattening region and the zero point reaches a value of 0.026.

Fig. 9.
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Fig. 10.

On account of the effects of the flattening of the trajectories described here, students in the years from 1950 to 1960 would have
been unable, in the case of these parameter values, to reveal limit cycles in system (2.1). In order to calculate the trajectories shown in
Figs. 9 and 10, a powerful contemporary computer procedure was required.39

Note that inclusion of computer calculations recently enabled a two-dimensional cubic system with twelve cycles to be found.43

4. The method of harmonic linearization (MHL)

We first recall some concepts and ideas which are widely known in control theory.
Any continuous linear device L with a scalar input and output and an n-dimensional state space (Fig. 11) is described by the equations

where P is a real n × n matrix, q and r are real n-vectors and an asterisk denotes transposition. Here, the function u(t) is treated as an input
(control) and the function 
(t) as an output (observation).

If P, q and r are independent of time, L is said to be a time-independent device. Here, we shall consider time-independent devices. In
the case of such devices, it is possible to introduce a transfer function 44–47

where p is a complex variable.
Linear devices with non-linear feedback (Fig. 12) are one of the basic subjects of investigations in non-linear control theory. Here, the

input 
(t) and the output u(t) of the device N are connected by the following functional relation

Hence, the block diagram shown in Fig. 12 is described by the system of differential equations

(4.1)

We shall subsequently assume that �(0) = 0 and �(�) is a piecewise continuous function (that is, it has a finite number of discontinuities
of the first kind in any finite interval.48 The solutions of system (4.1) are understood in Filippov’s sense.49

The method of harmonic linearization (MHL), which is also known as the method of describing functions, is a common approxi-
mate method (that is, not rigorously mathematically substantiated) of searching for oscillations which are close to the harmonic periodic
oscillations of non-linear dynamical systems.44-47

We will describe the standard procedure for searching for harmonic oscillations using the MHL in the case of system (4.1).
In searching for such an oscillation, a certain harmonic linearization coefficient k is introduced so that the matrix of the linear system

Fig. 11.
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Fig. 12.

(4.2)

where P0 = P + kqr∗, has a pair of pure imaginary eigenvalues ±i�0(�0 > 0) and its remaining eigenvalues have negative real parts. We
will assume here that such a number k exists.

A transfer function W(p) is used to solve practical problems of determining the quantities k and ω0: the number ω0 is determined from
the equation

and k is then calculated using the formula

If such ω0 and k are found, then it is confirmed that system (4.1) has a periodic solution x(t) for which

(4.3)

At the same time, the amplitude a is found from the equation

(4.4)

It is well known that the MHL can produce incorrect results. Such results have been presented in the case of bang-bane systems.50 We
recall the well known Aizerman problem for smooth non-linear systems.9

In 1949, Aizerman formulated the following problem for system (4.1): suppose all linear systems (4.1) with �(
) = �
,� ∈ (�1,�2) are
asymptotically stable. It is necessary to ascertain whether any non-linear system (4.1) with non-linearity �(
) satisfying the condition

will be stable as a whole (that is, the zero solution is asymptotically stable and any solution x(t) tends to zero when t → +∞).
We will now consider the result that the MHL gives for this problem.
It is clear that, in this case, one of the conditions: either k > �2 or k < �1 is satisfied for the harmonic linearization coefficient k. But,

then, either k�2 >  (�)� or k�2 <  (�)� for any values of 
. It follows from this that the inequality

holds for all a /= 0. Comparing this inequality with relation (4.4), we obtain that the non-linear system considered does not have a periodic
solution for which relation (4.3) is satisfied. Hence, within the limits of the application of the MHL, the conclusion is usually drawn that
the non-linear system (4.1) does not have any periodic solutions at all and is stable as a whole 51.

It will be shown later that these conclusions are incorrect and that the non-linear systems considered in the Aizerman problem can
have periodic solutions.

Over the course of many decades attempts have been made, in relation to the above-mentioned facts, to find the classes of systems
where MHL (or the various generalizations of it) turns out to be accurate and gives correct results. Some of the first attempts in this direction
were Bulgakov’s papers,52,53 where a version of the classical small parameter method was used. This was subsequently subjected to serious
criticism 54 based on the fact that “these small parameter methods rest on the assumption that the initial system differs only slightly from
a linear system possessing a natural generating frequency. Such assumptions cannot be made in automatic control theory since the system
is clearly non-conservative and the stability conditions in the linear approximation are satisfied with a sufficient margin”.54
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Other methods of introducing a small parameter, based on a filter hypothesis, started to be developed which took account of this
criticism.44,45,55-59

The development of numerical methods, computational techniques and the applied theory of bifurcations enabled a return to be made
to earlier ideas on the application of the small-parameter method and MHL in dynamical system and enabled them to be considered from
new positions.

The use of modern computer calculations makes it possible to find without difficulty an asymptotically stable periodic solution of a
system of ordinary differential equations using initial data found in the region of attraction of this solution. In other words, from an initial
point located in the region of attraction of the required solution after a transitional process, the computational procedure reaches a periodic
solution and calculates it.

On the other hand, it has been shown above that very significant difficulties are encountered in the numerical search for periodic
solutions in the whole of phase space even in the case of two-dimensional autonomous quadratic systems.

The combined use of MHL, the classical small parameter method and numerical methods enables one to reduce the calculation of the
periodic modes to a certain multistep procedure, where MHL is used in the first step.

We will now describe the basic stages of this procedure for system (4.1).
As a result of introducing a harmonic linearization coefficient, system (4.1) can be rewritten in the form

(4.5)

Since it is the periodic solutions of system (4.5) which are of interest, it is quite natural to introduce a finite sequence of piecewise
continuous functions �0(
),�1(
), . . . ,�m(�) such that the function �0(
) is small, �m(
) = �(
) and the graphs of the neighbouring
functions �j and �j+1 are slightly different in a certain sense. In the case of continuous functions, this is, for example, the differences
between the functions at each point (for piecewise continuous functions, it is the same smallness but only outside small neighbourhoods
of the points of discontinuity).

The smallness of the function ϕ0(�) enables one to use and substantiate the MHL in this case for the system

(4.6)

by determining the solution close to the stable harmonic periodic solution x(t) = x0(t). All points of this stable periodic solution are
either located in the region of attraction of the stable periodic solution x(t) = x1(t) of the system

(4.7)

with j = 1 or, on changing from system (4.6) to system (4.7) with j = 1, stability loss bifurcation and the disappearance of the periodic solution
is observed. In the first case, x1(t) can be determined numerically, producing the trajectory of system (4.7) with j = 1 from the initial point
x0(0).

Starting from the point x0(0), the computational procedure, after the transition process, reaches the periodic solution x1(t) and calculates
it. To do this, the interval (0, T), in which the calculation is carried out, must be sufficiently wide.

After calculating x1(t), it is possible to change to the following system (4.7) with j = 2 and to organize a similar procedure for calculating
the periodic solution x2(t), producing a trajectory from the initial point x(0) = x1(T) which, as t increases, approaches the periodic trajectory
x2(t).

Continuing this procedure further and calculating xj(t) using the trajectories of system (4.7) with the initial data xj(0) = xj−1(T), we
either arrive at the calculation of the periodic solution of system (4.7) with j = m, that is, of the initial system (4.5), or we observe stability
loss bifurcation and the disappearance of the periodic solution at a certain step.

The functions

where � is a “classical” small positive parameter and, for example,

is the simplest and most natural class of functions ϕj in the procedure described above.
A rigorous substantiation of the MHL and the determination of the initial conditions for which system (4.6) has a stable periodic solution,

close to a harmonic solution, is found to be possible in the case of system (4.6) with the function ϕ0(�).
Since, in the procedure described here, the small parameter method together with the MHL only determines the “starting” initial

conditions for the “starting” periodic solution, all estimates for this determination can be considerably simplified and roughly approximated.
This especially concerns the rigorous results on the stability of a periodic solution. Here, the stability of the solution can be replaced by the
stability of a certain Poincaré mapping.

We will next describe such a simplified analysis of systems (4.6) with a small parameter �.

5. Estimation of the solutions of a system containing a small parameter

An estimate of the increase in the solution of system (4.6) and an estimate of the difference between the solutions of systems (4.6) and
(4.2) in a finite time interval are found to be necessary in order to compare the solutions of systems (4.2) and (4.6) with the same initial
data. We now present these simple estimates.
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We shall assume that the estimate

(5.1)

is satisfied for the function ϕ0(�) and consider the solutions x(t) and z(t) of system (4.6) and (4.2) with the same initial data x(0) = z(0).

Lemma 1. Suppose the inequality

(5.2)

is satisfied. Then, for a number ε> 0, which is sufficiently small with respect to T,�, |P0|, |SP0|−1,N(2�|r|), the solution x(t) satisfies the estimates

(5.3)

Proof. We assume that estimate

(5.4)

Proof. We assume that estimate (5.3) is not satisfied. The existence of a number � ∈ (0, T) then follows from the continuity of x(t) and the
inequality |x(0)| ≤ � for which

(5.5)

We now introduce the function V(t|x(t) − z(t)| into the treatment. It is continuous in [0, �] and, therefore, V(t) /= 0 in intervals of the
form (˛,ˇ) ∈ [0, �]. The equality V(t) = 0 is satisfied at the remaining points of the interval [0, �].

We now construct estimates in one of the intervals (�, �). The inequality

which can be rewritten in the form

follows from relation (5.1).
From this differential inequality and from the assumption that the interval (�, �) to the left is a maximum interval (that is V(˛) = 0),

we obtain the estimate

(5.6)

Since the intervals (�, �) are all possible intervals for which V(t) /= 0, we conclude that the estimate (5.6) holds for all t ∈ [0, �].
Choosing � such that the inequality

is satisfied, from inequality (5.6) we obtain the estimate

which contradicts the last relation of (5.5). The resulting contradiction proves estimate (5.3).
It follows from estimate (5.3) that inequality (5.6) is satisfied when t ∈ [0, T]. This implies that inequality (5.4) is satisfied which also

proves Lemma 1.
It follows from Lemma 1 that the solutions of systems (4.2) and (4.6) differ by no more than O(�).

6. Poincaré mapping for harmonic linearization in the basic case

Here, we now consider system (4.6) with ϕ0(�) = εϕ(�), where � is a small parameter and ϕ(�) is a piecewise continuous function with
points of discontinuity �j andϕ(0) = 0. We shall assume that the function ϕ(�) satisfies the Lipschitz conditions

in the intervals (�j, �j+1).
If the function does not have points of discontinuity in (�j,+∞) (or (−∞, �j)), we shall assume that

In the case of (−∞, �j), we have the intervals (R, �j), where R∈ (−∞, �j).
In the case when there are no points of discontinuity, we assume that

where R is an arbitrary positive number.
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We now introduce the notation

It is well known that system (4.6) can be reduced by a non-singular linear transformation to the form

(6.1)

Here A is a constant (n -2) × (n - 2) matrix, all the eigenvalues of which have negative real parts, b and c are (n - 2)-dimensional vectors
and b1 and b2 are certain numbers.

Without loss of generality, it can be assumed here that a positive number � exists for the matrix A, and for this number,

(6.2)

It is obvious that system (4.2) reduces to the form

(6.3)

We now introduce the following set in the phase spaces of systems (6.1) and (6.3):

Here, a1, a2,D are certain positive numbers which will be determined below.
We first introduce the Poincaré mapping F0 of the set� for the trajectories of system (6.3). Here,

(6.4)

Hence, the first time of intersection of the set {z2 = 0, z1 ∈ [a1, a2]} by the trajectory of system (6.3), which has been emitted when t = 0
from the set�, is equal to 2/ω0. Here,

It follows from condition (6.2) that

Hence, F0 maps the set� into itself.
From formulae (6.4) using Lemma 1 (estimate (5.4)), we obtain the relations for the solutions of system (6.1)

(6.5)

We recall that, here,

(6.6)

It follows from formulae (6.5) that, for any point x0(0), x2(0) = 0, x3(0) belonging to�, a number

exists for which

(6.7)

At the same time, the relations

are not satisfied when t ∈ (0, T).
The inequality

(6.8)

follows from the last equation of system (6.1) and condition (6.2).
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If |x3(0)| ∈Dε, it follows from the first two formulae of (6.5) that, for a certain D1 > 0.

(6.9)

We next assume that � is so small that ε|c|D1 < 1 and, in the first two relations of (6.5), O(ε)< 1. Then,

(6.10)

It follows from inequalities (6.8) and (6.10) that

(6.11)

Relations (6.11) and the inequality

(6.12)

imply the estimate

(6.13)

We now consider the function

The relation

(6.14)

is satisfied along the trajectories of system (6.1) for the derivative of the function V.
We shall now consider the values of x1(0), where x1(0) /= ± j and j are the points of discontinuity of the function �(
).
From the first two relations of (6.5) and inequality (6.9), we obtain the estimate

(6.15)

Actually, in the case of values of t for which cos(�0t)x1(0) /= j , from the Lipschitz property of the function (
), the first two relations
of (6.5) and inequality (6.9) in the case of small � we obtain the estimate

(6.16)

If cos(�0t)x1(0) = j , then, from the inequality x1(0) /= ± j , we obtain that �0t /= k� and, consequently, in the case of small �,

where � is a certain number which is independent of �.
It follows from the last inequality that estimate (6.16) is satisfied for all values of t ∈ [0, T] for which �0t /= k�. Hence, relation (6.15)

follows from the first two relations of (6.5) and equality (6.14).
Since T = 2�/�0 + O(�), from equality (6.15) we obtain the estimate

(6.17)

We now introduce the function

The following result arises from relations (6.13) and (6.17).

Theorem 4. If the inequalities a1 /= ± �j, a2 /= ± �j and

(6.18)
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are satisfied, then, for a sufficient small ε> 0, the Poincaré mapping

(6.19)

of the set˝ is a mapping into itself: F˝ ⊂˝.

The following corollary follows from this theorem and Brouwer’s fixed point theorem.60

Corollary 1. If the inequalities a1 /= ± �j, a2 /= ± �j and (6.18) are satisfied, then, for sufficiently small ε> 0, system (6.1) has a periodic solution
with period

This solution is stable in the sense that its neighbourhood of˝ is mapped into itself: F˝ ⊂˝.

The following result is proved in a similar manner.

Theorem 5. If the inequalities a1 /= ± �j, a2 /= ± �j and inequalities (6.18) of the opposite sign are satisfied, then, for sufficiently small ε> 0, the
Poincaré mapping (6.19) of the set˝ is of a hyperbolic character: compression occurs along x3, estimate (6.13) is satisfied and elongation occurs
along x1: Fa1 < a1, Fa2 > a2.

7. Algorithm for determining the stable periodic solutions of generating systems

We will write the transfer function of system (4.6) from the “input 0” to the “output -r*x”

(7.1)

where � and � are certain numbers, Q (p) is a stable n - 2 degree polynomial and R(p) is a polynomial of degree less than n - 2. We shall
assume that R(p) and Q (p) do not have common roots.

Since system (6.1) is equivalent to (4.6) and, consequently, the transfer functions of these systems are identical, we have the relations

Theorems 4 and 5 can be reformulated as follows.

Theorem 6. If the conditions

are satisfied, then, in the case of sufficiently small ε> 0, system (4.6) with the transfer function (7.1) has a T-periodic solution such that

This periodic solution is stable in the sense that some �-neighbourhood of it exists such that all solutions with initial data from this
�-neighbourhood remains in it when the time t increases.

Theorem 7. If the conditions

are satisfied, then, for sufficiently small ε> 0, system (4.6) with transfer function (7.1) has a solution of the form

and the behaviour of the trajectories in the neighbourhood of this solution has a hyperbolic character.

Theorems 6 and 7 are identical to the procedure for searching for the stable and unstable periodic solutions by the standard approximate
MHL43-46 in the case of small �.

Example 1. Suppose ϕ(�) = � − sign�. Then,
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Fig. 13.

It follows from this that a is determined from the equations K(a) = 0 in the following manner:

and the stability conditions takes the form ˛> 0.

We now consider system (4.5) with

(7.2)

and then systems (4.6) and (6.1). In this case,

Using the classical MHL,43-46 we obtain that, for any � > 0, system (4.6) (or (6.1)) has a periodic solution and for it

According to Theorem 6 in the case of small � > 0, system (6.1) considered here has a stable periodic solution of the form

We next trace the transformation of this solution as � is increased in discrete steps from 0.1 to 1. The computational procedures are
organized as described in Section 4.

The projections of the periodic solutions calculated in this way onto the {x1, x2} plane are shown in Fig. 13. The graph of�(t) = x1(t) + x3(t)
is also shown for them.

Note that the “output” �(t) is close to harmonic and the filter hypothesis 54-59 holds here. Hence, it is possible in principle in this case
to substantiate the standard MHL for the values of � considered.

Example 2. Now suppose ϕ(�) = k1� + k3�3. Then,

It follows from this that a is determined from the equation K(a) = 0 as follows

and the stability condition takes the form ˛k1 < 0.

We again consider system (4.5) with W(p) of the form of (7.2). Suppose k1 = −3, k3 = 4. Then a1 = 1.
Using the standard MHL, we obtain that, for any � > 0, system (4.6) (or (6.1)) has a periodic solution and for it
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Fig. 14.

According to Theorem 6 in the case of small � > 0, system (6.1) here has a periodic solution of the form

(7.3)

Next, using the computational procedure described in Section 4, we obtain the periodic solution of system (4.7) when

The projections of the periodic solutions calculated in this manner into the {x1, x2} plane are shown in Fig. 14. The graph of �(t) =
x1(t) + x3(t) is also shown for these periodic solutions. When ε3 = 0.7 and ε4 = 1, the output 
(t) is far from harmonic and, in this case, the
filter hypothesis is incorrect. Here, it is therefore impossible in principle to substantiate the MHL on the basis of the filter hypothesis.

We will now present an example of collapses of periodic solutions when the parameter εj in the computational procedures described
in Section 4 is increased.

Example 3. Suppose ϕ(�) = −3� + 4�3 and

In this case,

The standard MHL predicts the existence of a periodic solution for any � > 0 and, for it, �(t) = x1(t) + x3(t) ≈ const.
According to Theorem 4, in the case of a small � > 0 we obtain a periodic solution of the form (7.3).
As � increases, a periodic solution of system (6.1) exists when ε∈ (0, �), and, when ε = �, a stability loss bifurcation occurs and the

periodic solution disappears. For ε∈ (�,1), the domain where a periodic trajectory is found is the domain of attraction of the stable
equilibrium state. Projections of the periodic solutions onto the {x1, x2} plane are shown in Fig. 15 for ε = 0.25,0.3,0.35.

When � = 0.35, a tendency towards the equilibrium state of the trajectories with initial data on the “collapsed periodic trajectory” is
observed.

We recall that the equilibrium states of system (4.6) satisfy the relations

Fig. 15.
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Since, here, W(0) = 2, from the first equality we obtain the relation

It follows from this that, when ε < 1/6, the system considered only has a zero equilibrium. When �> 1/6, the system has three
equilibrium states

They are unstable when �′(
0)< 0 and stable when �′(
0)> 0. Consequently, the zero equilibrium is always unstable, and the non-
zero equilibria are unstable when �< 1/4 and stable when �> 1/4. The periodic solution considered, which collapsed after bifurcation, is
also attracted to one of these equilibria. The standard MHL “does not notice” all these qualitative changes in the phase space of the system
considered.

8. Poincaré mapping for harmonic linearization in the critical case

It has been shown in Section 4 that it is necessary to develop more refined “non-standard” MHL in order to find the periodic solution
in systems satisfying the generalized Routh–Hurwitz conditions. This extension of the standard MHL to several singular mathematical
constructions and estimates in the spirit of classical investigations of critical cases in the theory of the stability of motion 61 enabled
effective estimates to be obtained for periodic oscillations in non-linear systems satisfying the generalized Routh–Hurwitz conditions.

Here, we consider the development of this method for systems (4.6) with non-linearities ϕ0(�) of the special form

(8.1)

where � and M are certain positive numbers and � is a small positive parameter. Non-linearities of close types have been used in theorems
on the existence of periodic solutions for systems satisfying the generalized Routh-Hurwitz conditions.13,62–64

We reduce system (4.6) with non-linearity (8.1) to the form

(8.2)

As in system (6.1), A is a constant (n - 2) × (n - 2) matrix, all the eigenvalues of which have negative real parts, b and c are constant
(n-2)-vectors and b1 and b2 are certain numbers.

Without loss of generality, we shall assume that condition (6.2) is satisfied for the matrix A.
The Poincaré mapping will be introduced here using a somewhat different method than in Section 6. The main difference lies in the

introduction of the set�:

where a1, a2 and D are certain positive numbers which will be determined below.
It follows from Lemma 1 that the relations

(8.3)

hold for all t ∈ [0,4/ω0] in the case of the solutions of system (8.2) with initial data x1(0), x2(0), x3(0) from the set�. It follows from this
that, in the case of these solutions, numbers

exist for which
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At the same time,

(8.4)

The estimates

successively follow from the formula

relations (8.3) and (8.4) and the form of the function 0(
). In the inequality corresponding to j = 5, O(ε2) ≤ Eε2, where the number E
depends on |b|, � and M.

(Note that it follows from inequality (6.2) that |eA(t−s)| ≤ 1,∀t ≥ s). Hence, by choosing the number D such that

we obtain that the Poincaré mapping

of the set� satisfies the inclusion

We shall make this estimate more precise, showing that, for certain values of the parameters, F˝ ⊂˝. To do this, we introduce the
function

into the treatment, where xj(t)(j = 1,2,3) is the solution of system (8.2) with initial data xj(0) from�.
We now estimate the increment in the function w, representing the integral over the interval [0,T] in the form of a sum of integrals over

the intervals [0, �1], [�1, �2], [�3, �4], [�4, T]. We obtain

Here, t(
) is a function which is inverse to 
(t) in the interval [0, �1] and [�4, T] when k = 1 and in the interval [�2, �3] when k = 2.
We now introduce the notation

The following refinement of the estimates (8.3)

(8.5)

follows from the first two equations of system (8.2) and the estimates (8.4), and the relation

is satisfied.
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From this and equalities (8.5), we obtain

(8.6)

Consequently,

Hence, if the inequality

(8.7)

is satisfied, then, when x2(0) = −a2, we have w(T)> w(0), and, if the inequality

(8.8)

is satisfied, then, when x2(0) = −a1, we have w(T)< w(0).
It follows from this that, when inequalities (8.7) and (8.8) are satisfied, the inclusion

(8.9)

holds, and it follows from this and Brouwer’s theorem that a fixed point of the mapping F exists, and this means that a periodic solution of
system (8.2) with initial data from the set� exists.

It follows from inequalities (87) and (8.8) that these initial data satisfy the relations

(8.10)

In this case, the periodic solution is stable in the sense of the inclusion (8.9).

9. Algorithm for determining stable solutions in systems satisfying the generalized Routh–Hurwitz condition

We record the transfer function of system (4.6) (or (8.2)) from the “input �0” “to the “output -r*x”

(9.1)

Here,

We now formulate the results obtained in the preceding section in terms of the transfer function W(p).

Theorem 8. If the inequality ˛> 0 and

(9.2)

are satisfied, then system (8.2) with the non-linearity (8.1) has a periodic solution which satisfies relations (8.10) and

(9.3)

This solution is stable in the sense of inclusion (8.9).

Example 4. We consider system (4.6) with the transfer function
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Fig. 16.

Here,

The stability of the linear system (4.7) with ϕj(�) = k� holds here for all k∈ (0,+∞).

Suppose

Here,

and � is a small positive parameter.
According to Theorem 8, the initial data of the stable periodic oscillation in the first step j = 1 take the form

Hence, when j = 2, we emit a trajectory from the point

The projection of this trajectory onto the (x1x2) plane and its coordinate x2(t) are shown in Fig. 16. It is clear that, after the transition
process, a stable periodic solution is reached.

Continuing this procedure when j = 3, .., 8, we find the periodic solutions, and, when �9 = 0.8, disappearance of the periodic solution and
attraction to the stable equilibrium state is observed (Fig. 16).
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Note that, when εj =
√

2, the non-linearity ϕj(�) is monotonic. The fact that there are no periodic solutions in the case of system (4.7)
with such a non-linearity when n = 3 is well known.63,64 Hence, here also, a stability loss bifurcation is observed and disappearance of a
periodic solution.

The search for higher order systems, in which the algorithm for finding the periodic solutions leads to system (4.1) with a non-linearity
�(
) from the Hurwitz sector, which is monotonic with respect to the two boundaries of the Hurwitz sector and has a stable periodic
solution, is an important problem.

In the following example, we will show that the condition �� ∗ q ≤ ��2
0 is a necessary condition and that the inequality

(9.4)

is a sufficient condition for the absolute stability of system (4.6) when n = 3.

Example 5. We now consider a third order system (4.6) with a transfer function of the form

The relations � > 0 or ˛ = 0, �ˇ > 0 are necessary and sufficient conditions in order that system (4.6) in the case of ϕ0(�) = k� and small
positive k should be stable as a whole. These are the so-called conditions of limit stability.65

When � > 0, we make use of Popov’s frequency criterion

(9.5)

and, when ˛ = 0, �ˇ > 0, we make us of the criterion63,64

(9.6)

It is clear that inequality (9.6) is satisfied when ˛ = 0, �ˇ > 0. In this case, (0,+∞) is the sector of absolute stability. Inequality (9.5)
takes the form

(9.7)

Since the factor with � is a monotonic function, inequality (9.7) is satisfied for the following conditions

If

then absolute stability holds in the sector (0,+∞) when

and in the sector

when

This sector is identical to the maximum Hurwitz sector, and, consequently, the Aizerman hypothesis holds in this case.
If

(9.8)

then absolute stability holds when

(9.9)
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Condition (9.9) is identical with the inequality (9.7). Hence, the condition�ˇr ∗ q ≤ ˛ω2
0 is a necessary condition and (9.4) is a sufficient

condition for absolute stability of system (4.3) when n = 3. It follows from this that, if inequality (9.8) is satisfied, the Aizerman hypothesis
holds.

A book 13 is devoted to such an analysis of system (4.3) with n = 3.
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